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ABSTRACT

The SRO station MAIO was used to obtain many measurements of Pn and LR
from a sequence of aftershocks at Gazli, Uzbekistan in 1976, at a distance
of 576 km. SP periods and amplitudes are analyzed to obtain the proper

distance correction factor to yield m. . Eighteen events are measured to give
an M_ range 2.2 to 3.6, and m range 3.6 to 5.0, The observations support
the postulation that aus/amb = 1 at low magnitudes. The Gazli population
overlaps a Eurasian teleseismic population, and 18 believed to be free of

large error in determination of Ms and m .
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INTRODUCTION

This report describes the acquisition and processing of seismic wave-
forms from the aftershock sequence of the Gazli earthquake of 02 hours 40
minutes 23.9 seconds on April 8, 1976. This project was started with three

objectives in view:

+ Extend Mszmb measurements to low values;
e Provide experimental observations to test the theoretical

concept that aMs = 1 at small values of magnitude; and

a9
« Investigate the difficulties in using regional measurements

of magnitude in conjunction with teleseismic measurements

of magnitude.

In order to make magnitude measurements of low energy earthquakes, the
receiving seismograph must be located close to the epicenter; otherwise the
surface waves will be attenuated so much that they will be lost in the earth

noise at the receiver.

In the present experiment the Seismic Research Observatory (SRO) station
Mashad, Irén (station designator MAIO), located 576 km from the epicenter of
the major shock, was used as the only receiving seismograph because it was
the only digital system in operation at the time. The SRO digital seismic
system has a dynamic recording range of 60 dB for short-period and 120 dB for
long-period. It was hoped to exploit this wide dynamic range to gather a
range of magnitude values from the largest value 6.2 L of the main shock,
down to the earth noise level equivalent to 3.0 m at the Gazli distance.
This potential magnitude range of 3.2 magnitude units, equivalent to 63 dB,
is considerably greater than the 40 dB dynamic range recording capability
of a WWSSN station, and would give the opportunity to tie in these lower
Hszmb measurements with the more abundant larger values existing in the

literature.

It was found that the upper range of n values was limited by non-
linear effects in the analog part of the SRO system which became apparent
at 5.2 W thus precluding the possibility of larger m measurements with
the same source-station combination. Apparently the large amplitude high
frequency signal associated with the phase Sn saturates the early stages of

-l=
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amplification and causes the long-period signal to lose fidelity. The long

time constant of the filters in the LP sections cause LP distortion to persist
for several minutes although it appears that the SP signal regains its fidelity

within several seconds.

In this report the acquisition procedures are described, followed by
a discussion of the formulas and procedures used to calculate Ms and m .
An interpretation of the systematic increase of Pn period with amplitude
is used to estimate the attenuation of the path, and by using this estimate,

to obtain the distance correction factor for this geographical path.

Our MS:mb results are presented in the context of Eurasian earthquakes
determined at teleseismic distance by Bungum and Tjostheim (1976) with the
NORSAR array. The two populations, observed with two very different instru-

ments, appear to form a coherent pattern.

Bungum, H. and D. Tjostheim (1976). Discrimination between Eurasian earth-
quakes and underground explosions using the mp:Mg method and short-
period autoregressive parameters, Geophys. J. R. Astr. Soc., 45,
371-392.




DATA PROCESSING

The main shock which caused extensive damage in the town of Gazli in
Uzbekistan, USSR, occurred on April 8, 1976 at 02 hours 40 minutes 23.9
. seconds, 40.31°N latitude and 63.72°E longitude and had an m = 6.2 accord-~
ing to the ISC bulletin. Figure 1 shows the location of Gazli and MAIO. [
The extended aftershock sequence which developed continued for a period of
three months before the reported rate of earthquakes fell below two per
month. Although the SRO system is detection-triggered for SP recordings,

the high rate of activity during the first 24 hours provided almost contin-

uous recording, which facilitated searching for small events that might not

4

have triggered the recording system.

Plots of the quasi~continuous SP recording were produced from the
digital tapes and searched for signal arrivals. Figure 2 shows the plot
format and an example of the excellent signal quality produced by the SRO

|

!

system. i
Jeffreys-Bullen seismological tables established that the earliest ’
arrival was Pn and the following characteristic impulsive high frequency ;

phase was Sn' The following extended lower frequency phase is L with a
maximum amplitude propagating at a group velocity of about 3.1 km/sec. The
usual velocity for Lg is 3.5 km/sec, but there is no phase visible at this ﬂ
velocity in these recordings because of the emergent nature of Lg along
this path.

The short, impulsive phase Sn was useful in detecting the smaller
events where it was very difficult to find Pn by itself. Sn was easy to
recognize and the constant time differential of 61 sec between Pn and Sn
established the location of Pn. Once an origin time was established, the
separately plotted long-period three-component signal was examined for
surface waves visible above the background noise. The velocities of the

various phases examined in this report, based on a 570 km long path were:

-9




ao‘ug_

3 \ o)
¥ 60

e

*
* ;f * *

*

40°

b * *
* *

— s Gom Sm— — ——

of™>
zozn,

Figure 1.

..W

Location of the earthquake aftershock sequence at Gazli,

and the SRO station MAIO. The asterisks show the geo-
graphical distribution of earthquakes and the symbol O
denotes explosions recorded at NORSAR (Bungum and Tjostheim,
1976) used for comparison with the Gazli sequence.
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i

Velocity Travel Time

Phase km/sec seconds
| P 7.38 78 -
o n

S 4,16 138.5

n

Lg (maximum) 3.06 188
2 Surface Wave-~Long Period 2.94 196

The surface waves in all events were well developed dispersed waves
with apparent periods from 18 to 25 seconds with the peak amplitude occur-
ring generally at 20 seconds as shown in Figure 3. The surface waves were
visible on all three components with comparable amplitudes. The threshold
for detection of surface waves determined by minimum earth noise of about

25 nanometers peak-to-peak, which corresponds to an Ms of 2.2 at Gazli.

The earthquakes selected for use in this study are listed in Table I.
The first twenty-four hours of the aftershock sequence were used to find
small magnitude events because the short-period detector was triggered

almost continously during that time. Later, the NEIS bulletin was used to

en a1 DT TR 47 R VYRR o oG T R BT s o h 4t e

identify some larger events so that the full dynamic range capability of
MAIO could be used.

-12~
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Earthquakes in the Gazlli Aftershock Sequence

TABLE I

Used in This Study

Event Number Date Origin Time L Ms
1 08 Apr 76 11:45:49.7 4.2 3.1
2 08 Apr 76 12:42:06.7 3.6 2.7
3 08 Apr 76 14:27:09.3 3.9 2.5
4 08 Apr 76 14:41:28.0 3.8 2.6
5 08 Apr 76 15:26:52.7 3.9 2.7
6 08 Apr 76 17:03:33.2 3.9 2.5
7 08 Apr 76 18:39:38.2 3.7 2.6
8 08 Apr 76 22:54:17.7 4.3 3.1
9 09 Apr 76 01:09:26.8 3.6 2.7

10 09 Apr 76 02:46:24.9 4.5 3.0
11 09 Apr 76 03:59:19.3 3.7 2.2
12 23 Apr 76 01:56:48.3 5.0 3.9
13 23 Apr 76 20:55:31.7 4.6 3.7
14 05 May 76 12:49:14.8 4.2 3.1
15 07 May 76 00:10:48.4 4.9 3.6
16 17 May 76 11:01:26.3 4.2 3.2
17 17 May 76 17:46:17.2 4.6 3.6
18 19 May 76 01:11:20.8 4.4 2.8
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MEASUREMENT OF Ms MAGNITUDES

We decided to use the Ms formula suggested by von Seggern (1977), which
is written as

Ms = log(amplitude) + 1.08 loghs - 0.22

rather than those given by Vanek et al. (1962), Evernden (1971) or Marshall
and Basham (1972), since von Seggern's re-estimation of the amplitude var-
iation as the function of distance is based on the modern WWSSN LP network
and a very large number of amplitude readings. The results by von Seggern

deviate significantly from those implied by the "Prague" magnitude formula
A
Ms = log GT) + 1.66 logd - 0.18

and the latter is thus in doubt. Also, the amplitude variation observed by
von Seggern is predictable from wave propagation theory after fitting a
single parameter, the wave absorption, to the observations. Thus its
extension to distances as short as 5°, far shorter than von Seggern's

observations, has a sound base.

Because the possibility of creating a station bias would be high if we
were to use only the Ms values determined at MAIO as described, we sought

to establish if such a bias were present by using all available WWSSN station

von Seggern, David (1977). Amplitude-distance relation for 20-second Rayleigh
waves, Bull. Seism. Soc. Am., 67, 405-411.

Vanek, J., A. Zatopek, V. Karnik, N. V. Konderskaya, Y. V. Rizmichenko,
E. F. Savarensky, S. L. Solovev, N. V. Shebalin (1962). Standardiza-
tion of magnitude scales, Bull. (Izvest.) Acad. Sci. U.S.S.R., Geophys.
Ser., 2, 108,

Evernden, J. F. (1971). Variation of Rayleigh-wave amplitude with distance,
Bull. Seism. Soc. Am., 61, 231.

Marshall, P. D. and D. W. Basham (1972). Discrimination between earth-
quakes and underground explosions employing an improved My scale,
Geophys. J. R. Astr. Soc., 28, 431-458.
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recoxrds of the larger events. The larger events were recorded at distances
as great as 36.6° (COP-Copenhagen, Denmark) and 31.3° (NUR-Nurmijirvi,
Finland). Figure 4 shows the Rayleigh waves for event 17, Ms = 3.6, at NUR
where its amplitude is just above threshold, and the same event also at
Kabul, Afghanistan (A = 7.1°) where the amplitude is much higher. In
addition to the 20-second dispersed wavetrain, note the 4 to 6 second dis-
persed wavetrain which was not seen in the MAIO waveforms due, presumably due

to the difference in instrument responses.

There were 43 measurements of MS-WWSSN available for 7 of the Gazli
aftershock earthquakes. This information is plotted in Figure 5 and es-
tablishes an MAIO station bias of -0.3 magnitude units.

Thus, for the final Ms value used in this study, 0.3 was added to each

MS measurement determined by von Seggern's formula.

~16=-




20 sec Rayleigh wave

chtianesiiu

. . \ A . \
*MWMMWW\W

sttt

20 sac Rayleigh wave

IR T

, ’ Wm.mo ' .

Figure 4. Event number 17 surface waves recorded at NUR, M = 4,2
(above) and KBL, M_ = 3.5 (below). These are WWSSN
- stations and the tining marks are at one-minute intervals.
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MEASUREMENT OF m, MAGNITUDES

Summary

In this section it is suggested that the anelastic absorption of P-wave
on Gazli-MAIO path (A = 5,2°) is less than that on teleseismic paths over which
mb's are generally measured, and that the value of t* describing the absorption
on Gazli-MAIO path is ~ 0.11; that this small absorption causes the m, measure-
ments of the smaller Gazli shocks made at MAIO to have a positive bias relative
to teleseismic measurements, and that this bias can be approximately removed by

including an attenuation correction to the mb determination formula.

Since the agencies NEIS or ISC have given m, magnitudes only for a few
of the larger Gazli aftershocks, we determined mb's from the MAIO records.
We measured amplitudes and periods of P-waves. The periods are plotted
against trace amplitude in Figure 6. Periods of the smallest shocks are shorter
than periods generally observed at teleseismic distances. For amplitudes less
than 50 nm the period is a constant 0.4 * 0.1 seconds. For larger shocks the
period increases with amplitude. The impulse response of the SRO-SP channel
has a period of 0.3 seconds., We interpret the constancy of the period at small
amplitudes to mean that the SRO system sees the incoming P wave essentially as
an impulse with a duration so short that it does not influence the system res-
ponse waveform. In other words, the P-wave corner frequency has moved above

the system pass~band.

We used a set of simulated seismograms to model the amplitude versus
period behavior, using a unidirectional pulse of roughly triangular shape
to represent the P-wave passing through a constant Q response
(Carpenter, 1966) and the SRO-SP response. The absorption required with an
infinitely short impulse to lengthen the observed period to 0.4 seconds
was equivalent to t* = 0.11 when t* is defined as

T
<Q> = E*

where <Q> is the mean quality factor on the ray path and T is travel time.

Carpenter, E. W. (1966). Absorption of elastic waves - an operator for a
constant Q mechanism, AWRE Report No. 0-43/66, H. M. Stationmery Office,
United Kingdom. :
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A typical teleseismic value of t* = 0.3 (Der and McElfresh, 1977) would have

given a period of 0.54 seconds.

We then assumed the P-~wave pulse area I to be proportional to the cube
of the pulse width w (half of pulse duration for a triangular pulse) or I
= cw3. This proportionality can be derived from the relationship between
the seismic moment Mo and the source radius for circular faults with a
constant stress drop (Kanamori and Anderson, 1975). Selecting a suitable
constant ¢ we can reproduce the amplitude versus period behavior observed
in Figure 6, measuring the amplitudes and periods from simulated seismo-
grams using t* = 0.11. The derived relationship is plotted on Figure 6.
The value obtained for ¢ was 0 = 38 nm-s/sB. Increase of period is caused
by increase of pulse duration with amplitude. The set of simulated traces
and the input pulses is shown in Figure 7. Note that the waveforms and
periods for the three shortest pulses, each with a different duration, is

unchanged.

We now simulate seismograms attenuated: (a) by the above determined
t* value of 0.11 second and (b) by the assumed teleseismic t* = 0.3
seconds, and compute the difference of the log(A/T) or mb values between
the two sets. The difference is plotted on Figure 8 as a function of
amplitude (amplitude when attenuated with t* = 0.11). It is not constant
over the range shown, suggesting a positive bias for m determinations made
at MAIO for small Gazli shocks, even if the distance correction factor in
the m, formula is adjusted to give equal to teleseismic mb's for the
largest shocks in the series.

A simple remedy would be to correct for the larger amplitude along
the less attenuating path to MAIO, i.e. for the factor exp(0.197/T) where
0.19 is the t* difference and T is the period. After this is done, the
difference between the simulated MAIO and teleseismic magnitudes becomes
nearly constant (and zero) as shown in Figure 8. Also, if the division by

T in the m formula is neglected at MAIO, the resulting magnitude difference

Kanamori, H. and D. L. Anderson (1975). Theoretical basis of some empiri-
cal relations in seismology, Bull. Seism. Soc. Am., 65, 1073-1095.

Der, Z. A., and T. W. McElfresh (1977). The relation between anelastic attenua-
tion and regional amplitude anomalies of short-period P waves in North
America, Bull. Seism. Soc. Am., 67, 1303-1317.
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Figure 7. Theoretical response of P-wave signals after modifica- )

tion by attenuation and SRO instrument response.
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is fairly constant, as shown in Figure 8.

We determined the m values both by using the attenuation correction
and by neglecting the division by T, and then adjusted the respective dis-

o YT TR

tance corrections by comparing the o values reported by NEIS and ISC for

the largest shocks in the series to those computed at MAIO.

The correlation between attenuation-corrected log A/T values and tele-
7{’ seismic mb's are shown in Figure 9. Adjusting the distance correction for
;‘ MAIO so that we get, on the average, equal magnitudes, we get the formula

 ¢ for MAIO m as

m, = log %-- 0.434 39%13 +2.74 (1) @

Veith and Clawson's (1972) distance corrections would give
m = log % + 2.79

for crustal shocks at distance 5.2°.

AT ki . L b e o dae s

If we use the amplitude only and neglect the division by T, we get,
after adjusting the distance correction to agree with NEIS, and ISC mb's,

m = log A + 2.66 (2) i

This is close to the value given by Nuttli for Southern Asia (1979) for

[N,

a distance of 5.2°, or

m = log A + 2.57 (3)

Formula (3) was used to determine the m values in this study. A is cor-
rected for SRO-SP response at period T in all of the above formulae.

Veith, K. and G. Clawson (1972). Magnitude from short-period P-wave data, vl
Bull. Seism. Soc. Am., 62, 435-452. |
1

Nuttli, 0. W. (1979). Personal communication given at the AFOSR Conference, +
Sheraton International Meeting Center, Reston, Virginia, May 24-25.
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Figure 9. The correlation between attenuation-corrected log A/T
values and teleseismic values of m .
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Additional comments. The t* = 0.11 on the 580 km long P-wave path, of which

about 500 km is in the mantle, gives for the mean Q in the top of the mantle
a value of 570, if all absorption is assumed to happen in the mantle and none
in the crust. If the P-waves recorded at MAIO are head waves, their spectra
have the factor (:lw)-1 relative to the free body wave (Grant and West, 1965).
Keeping the source waveform an impulse, we get periods larger than 0.4 s in
trace simulations of head waves, even with no absorption. The waveform com-
pares poorly with observed P-waves. We suggest that the waves have fol-
lowed a curved ray path below the Moho discontinuity and are of body wave
type. Cerveny and Ravindra (1977) suggest that the diving P wave is more
likely to be observed than the head wave at distances larger than a few
hundred km in the presence of even a small positive velocity gradient in the
top of the mantle.

Cerveny, V. and R. Ravindra (1977). Theory of Seismic Head Waves, Univ.
of Toronto Press, Toronto.

Grant, F. S. and G. F. West (1965). Interpretation Theory in Applied
Geophysics, McGraw-Hill Book Co., New York.
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SIMULATED m VERSUS Ms RELATIONSHIP

At amplitudes smaller than 50 nm the P-wave period remains constant
(Figure 6) suggesting that the P-wave corner frequency has moved above the
system pass-band. We want to test how closely the P-wave amplitude is pro-
portional to the source seismic moment.Mo in such a situation under our con-
ditions. A P-wave amplitude proportional to Mo would cause aMs/me =1
according to such earthquake dislocation models as advocated e.g. by

Savage (1966).

We use the same waveform simulation as in the previous chapter, and
'plot in Figure 10 the logérithm of area I of the pulse against the n, computed
from the simulated trace. 1 is proportional to the source seismic moment
(Randall, 1971). We use the constant c¢ determined in the previous chapter,
t* = 0,11, and compute the m in the same way (formula 3) as from real

observations.

Assuming I to be proportional to Mo, and log Mo to be equal to Ms + C,
where C is a constant, Figure 10 suggests aMslamb to be = 1 at m, < 3.2, to
be close to 2.0 at m > 4.5, and to be intermediate (~ 1.35) between these

values.

Savage, J. C. (1966). Radiation form a realistic model of faulting, Bull.
Seism. Soc. Am., 56, 577-592.

Randall, M. J. (1971). Shear invariant and seismic moment for deep-focus
earthquakes, J. Geophys. Res., 76, 4991-4992.
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l OBSERVATIONS OF Lg AND Pn AMPLITUDES
‘ In discrimination seismology, it appears that in many parts of the world,

the ratio of maximum Lg amplitudes to Pn amplitudes can be a useful discrim-

inant for signals received at regional distances.

L_and Pn amplitudes are plotted in Figure 11 for the complete range of
event magnitudes that was faithfully recorded by the SRO station at MAIO; that

is 3.1 to 5.2 mb. The values plotted are zero-to-peak amplitudes. The data
show that maximum Lg amplitude was between 1.0 and 2,0 times the maximum Pn

amplitude, for this particular distance and region.
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Figure 11, P_ and L_ recorded at MAIO from Gazli earthquake after-
shock se&uence 8 April 1976.
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SATURATION AT SRO STATIONS

If we arrange a set of signals from the Gazli earthquake sequence in 1
order of increasing magnitude, or equivalently, increasing ground motion as
experienced at station MAIO, we can see the development of saturation effects i
in the SRO recording system and how the distortion of the signal shape pro- ﬁ

gresses in both the short-period channel and the long-period channel.

This has been done in Figure 12 where the signals have been aligned so
that both short-period and long-period are cotemporal at the arrival of Sn’
the largest amplitude phase in the short-period coda. Notice that there is
no distortion in either channel until the SP amplitude approaches 1048 nano-
meters (equivalent ground motion at 1 Hz). This is the clipping level of the
SP channel, and the SP signal will never be recorded as a larger digital signal,
even if the ground motion is greater. The clipping is visible as a squaring-

off of the sinusoidal peaks of the waveform, however.

The situation shows differently on the long-period channel. No digital
magnitude limit is obvious; the recorded counts become extremely large

instead. The surface wavetrain loses its oscillatory character and tends to

become a unipolar pulsgihith overshoot and exponential damping.

These saturation effects apparently reside in the analogue filter
section of the SRO system. The SP channel recovers much more quickly ¢
than the LP section, and what one sees is essentially the transient over-

load response of the LP filter section.
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RESULTS AND CONCLUSIONS

The measurements made as described in the preceding sections are plotted
in Figure 13 together with Eurasian measurements made at Norway by Bungum and
Tjostheim. The latter consist of earthquakes at distances of 22° to 55° from
the receiver, whereas the Gazli sequence is recorded at one fixed distance of
5.2°,

The largest o, for which an Ms is recordable is m = 5.2. This limit-
ation is a result of non-linear long-period effects destroying the fidelity of
the signal from larger events, even though there were larger events present

in the swarm.

The two populations, one teleseismic, and the other regional, are almost
overlapping on this Ms:mb diagram and this implies that there is no large error
in our determinations of either Ms or m . This is natural since we have cal-
ibrated our formulas for measuring Ms and m at 5.2° to agree with teleseismic
measurements of the same quantities by the WWSSN network and other stations

reporting to the ISC.

There is no reason, however, why a systematic difference could not appear'
between the magnitude determinations in the two populations, since the popu- .
lations are different. The earthquakes studied by Bungum and Tjostheim are
scattered over a region over 60 degrees wide, and thus represent the average
Hs/mb relations measured from a large area and from widely varying fault
mechanisms as depths in the crust. Our determinations come from an aftershock
sequence in a region less than 1 degree wide, where the shocks also probably
tend to have similar fault orientations and depth in the crust. Thus our
Hs and LS values may well reflect regional or source-related anomalies. The
absolute position of our population in the m, versus Ms plot (relative to the
other population) may well be uncertain by several tenths of magnitude unit.
The two populations should not be combined into one population. Our pur-
pose in trying to estimate reliable absolute Hs and L values was to deter-
mine how our shocks compare in size with the Bungum-Tjostheim population. As
shown in Figure 13, the larger half of our population has sizes comparable *
with the smallest shocks of the Bungum—-Tjostheim population, and the smaller

half of our shocks is significantly smaller than any of the Bungum-Tjostheim
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Figure 13. Gazli aftershock sequence (open circles) of events plotted

together with Eurasian earthquakes (filled circles) recorded
at NORSAR. The straight lines shown are maximum-likelihood
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though shown together here, should not be combined into one

population because of possible small systematic differences

in magnitude determinations.
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shocks. Our population thus extends the observations to lower magnitude

; The slope of the least-squares line fitted to the Bungum-Tjostheim popu-
lation is 1.9. The line is fitted assuming the m and Ms determinations to
have equal and uncorrelated errors (Eriksson, 1971). The slope is close to

| other MS versus m slope measurements, beginning from the Gutenberg-Richter
slope 1.6 (Savino et al., 1971; Marshall and Basham, 1972).

B

The slope of the line fitted to our population is 1.2 * 0,3, the latter
? figure being the standard deviation of the slope. The standard deviation is
large because errors are assumed to exist both in m, and M_ measurements. If
we take m , or Ms, to be without error we get, respectively, slopes 1.0 + 0.1,

or 1.3 £ 0.1. The main observation is that the slope is significantly small-

er than those found for populations of larger shocks.

M
The prediction that 3—§ approaches 1.0, when magnitude decreases below

a threshold, is supported by these observations. In Figure 10 we have given

a definite form to that prediction.

]

Tucker anq Brune (1977) measured o and Ms magnitudes for the aftershock
- sequence of the San Fernando earthquake of 1971 and found all events to lie R
within one standard deviation of a line with slope 1 drawn through the data.
g, If we fit a least squares line to their 15 observations covering roughly the
| same m, and Ms ranges as our population, we get the slope 1.2 + 0.2 assuming

again L and Ms have equal and uncorrelated errors.

Savino, J., L. R. Sykes, R. C. Liebermann and P. Molnar (1971). Excitation
of seismic surface waves with periods of 15 to 80 seconds for earthquakes
and underground explosions, J. Geophys. Res., 76, 8003-8020.

Eriksson, U. (1971). Maximuym likelihood linear fitting when both variables
have normal and correlated errors, FOA 4 Report C 4474-Al, Research

Inst. of National Defence, Stockholm, 80, Sweden.

Tucker, B. E. and J. N. Brune (1977). Source mechanism and m, -Mg analysis of
aftershocks of the San Fernando earthquake, Geophys. J. R. Astr. Soc., .
49, 371-426.
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